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1. INTRODUCTION

Ram acceleration is initiated by injection of a projectile, similar in shape to the center body of a ramijet
engine, into a tube filled with a combustible gaseous fueloxidizer/diluent, or simply propellant. As the
subcaliber projectile and obturator enter the propellant at supersonic speeds, shock and viscous heating
occurs. This heating ignites and sustains combustion on the aft section and behind the projectile. This energy
release occurs continuously as the projectile accelerates. It is often useful to adjust the propellant composition
down the length of the accelerator tube to ensure high efficiency of combustion in accelerating the projectile.
In practice, this is accomplished by segmenting the accelerator tube with thin plastic diaphragms to separate
the propellants. The fuel's components may be changed such that its properties (i.e. sound speed and
chemical energy) are adjusted to maximize projectile acceleration (Knowlen, Bruckner, and Hertzberg 1992).
The use of multiple fuels by segmenting the accelerator is often referred to as "staging" the accelerator.

The U.S. Army Research Laboratory (ARL) has been exploring in-bore ram acceleration as a technique
to obtain hypervelocities with useful (5-10kg) projectile masses. The research has consisted of an integrated
program of experiment and computational modeling. Past research has investigated scaling and pressure
effects and flow visualization (Kruczynski 1992; Kruczynski 1993a; Kruczynski 1993b). Current research is
ongoing in the areas of projectile geometry and staging effects.

2. FACILITY

2.1 Accelerator and Injection Gun. The ARL facility was created by removing the breeches of 120-mm

M256 tank guns and mating the tubes. Each accelerator section (tube) is 4.7 m long. Currently, three
accelerator tubes are available for a total combined accelerator length of 14.1 m. The accelerator tubes may
be segmented with PVC diaphragms and filled with different propellant gases or used without diaphragms
for longer runs with single propellant mixtures. The projectile is brought up to injection speed (typically 1,200
m/s) using a conventional 120-mm tank gun and a solid propellant. Projectile transition to the first accelerator
tube is made through a vented tube section. This section serves to both decouple the conventional gun recoil
(through a sliding interface) and vent solid propellant gases to minimize interference with the ram acceleration
process. Figure 1 shows the layout of the facility.

Transition/Venting Section M256 Cannor:

Accelerator

la P ———

I-BEAM

Figure 1. ARL ram accelerator with one accelerator tube.




Abank of gas storage bottles supplies the required gases. It should be
noted that ram acceleration propellant components are readily available at bottled gas dealers in standard
highway transportable storage bottles. The ARL facility also includes a compressor capable of charging the
accelerator to 340 atm. Recent additions to the facility include a premix station and online gas
chromatography for analyzing the propellant mixtures used. The premix station was installed to avoid any
ambiguity about the content and homogeneity of the propellant and is particularly useful for multistage firings
since the gas mixtures may be mixed, tested, and adjusted in advance.

Prior to installation of the premix station, the accelerator tubes in the ARL facility were directly filled with
the desired propellant by partial pressure methods. Samples taken from the accelerator before firing (but
analyzed days later) indicated that, in general, the actual propellant mixtures were in reasonable agreement
with intended mixtures. However, it was suspected that the propellant mixture was not homogeneously mixed
prior to firing (it was thought that mixing was being completed in the small sample bottles). When the portable
gas chromatography (GC) system was installed, these suspicions were confirmed. Table 1 shows data from
a two-accelerator tube shot in which the same mixture was simultaneously pumped into both tubes. Samples
from both accelerator tubes were then taken and analyzed immediately after filling (about 10 min apart).

Table 1. Analysis of Propeliant Mixtures Taken at Different Locations in the Accelerator Tubes

GC Analysis of

Shot/Stage and Fill Mixture Desired Volume % GC’ Analysis of
Stage 2

Pressure Component and (both stages) Stage 1
Order of Fill

26/1 & 2 at 57 atm CHa4 20 15 22
O2 13 15 14
N2 67 70 64

* GC is gas chromatography.

Table 1 shows a considerable discrepancy between the two samples.

The premix station consists of a bank of standard 44-liter gas bottles (initially mounted vertically), which
are remotely filled from the individual source gases many hours (or days) before firing. Using the on-line GC,
the banks of bottles may be sampled at any time and their contents adjusted if necessary. Analysis of the
premixed gases over extended periods of time revealed that, in general, 48 hr or longer is required to ensure
the gases have “completely" mixed by diffusion and residual turbulence from the filling process. This can be
seen in the samples taken from the first stage mixture of shots 34 and 35 shown in Table 2. in the future,
experiments with horizontally mounted bottles will be undertaken to reduce mixing times further.

When the propellant mixture appears to be within reasonable agreement with the desired mixture, it is
ready to be pumped to the accelerator tube for firing. In addition, if desired, multiple shots may be made
from the same premixed batch of propellant, ensuring repeatability. To date, no safety problems have been
encountered handling these premixed, typically fuel rich, propellants.




Table 2. Measurement of Propellant Mixtures Over Time

Shot/Stage | Mixture Desired | **GC Result | GC Result | GC Result | GC Result | GC Result
Number [Component*| Volume | After20 hr | After48 hr | After 68 hr | After 140 hr | After 204 hr

and Mixture Percent

in Mixture

34/1 at 81 CH4 20 45 -- 17 17 --

atm 02 13 9 - 14 14 -
N2 67 46 - 69 69 -

35/1 at 81 CH4 20 - 17 - - 17
atm Oz 13 - 14 - - 14
N2 67 - 69 - - 69

* Mixtures were filled in nine steps using one-third of each gas in each step.
**GC is gas chromatography.

3. STAGING EXPERIMENTS - RATIONALE, RANKING CRITERIA, AND TEST MATRIX

It has been well documented (Knowlen, Bruckner, Hertzberg 1992) that peak performance for a ram
accelerator, operating below the Chapman-Jouget detonation speed, is obtained when the total heat release

of the propellant (typically defined as ﬁ.) is kept as high as possible and the projectile’s relative Mach
(4

number as low as possible. However care must be exercised so that the flow neither gas-dynamically chokes
(becomes sonic) at the projectile’s throat (area of minimum clearance between projectile body and the tube
wall) nor disgorges a normal shock through the throat from behind, during excessive heat addition (an
unstart). Finding the optimum conditions may be dependent on the scale and design of the projectile. In
addition, the conditions during initial projectile injection into the accelerator from the injector gun (obturator
discard, etc.) may require that the initial propellant be characterized by lower heat release than propellant
for "steady" operation (Kruczynski, Liberatore, Kiwan 1993).

ARL has only recently expanded its facility to the point where the "optimum" conditions for efficient
operation (after the initial startup) are being explored. Duetothe relatively high cost of experimental operation
at 120-mm bore size, great care is taken in designing new experimental firing sequences in order to maximize
the insights gained from each firing. In the case of the firings reported in this report, a qualitative ranking
system was used to screen experiments. The ranking system is based on three simple comparative factors

for analyzing the experimental potential of a shot. The first two factors, available heat release %‘77—, and
{4

projectile Mach number (relative to the propellant ), were briefly discussed previously and are further detailed
in Knowlen, Bruckner, and Hertzberg (1992).

The third factor is the rate at which heat is released, as calculated using a methane/air combustion
mechanism developed by the Gas Research Institute consisting of 32 species and 176 reactions. This
mechanism is used in conjunction with the SENKIN kinetics code run at constant pressure with an initial
temperature derived from previous computational fluid dynamics (CFD) runs. Further details on the use of
this method are available in Nusca (1995). Using large kinetics mechanisms in CFD calculations results in
prohibitively long computer run times. Therefore, kinetics codes such as SENKIN should provide information
for screening new fuel mixtures and making comparative analyses, reducing the need for additional CFD
calculations.

The first shot in the staging experiments (shot 34) was designed to evaluate the potential for operating
the 120-mm ram accelerator at elevated (relative to the starting stage) heat release values. The second and




third accelerator tubes were filled with the more energetic mixture. No attempt was made in this experiment
to adjust sound speed of the mixture. Since this shot was successful, it became the baseline for comparison
with subsequent shots. Note that in all the shots in this series, the initial stage of the ram accelerator contained
nominally the same propellant which has shown excellent repeatability in previous ARL experiments
(Kruczynski 1992; Kruczynski 1993a; Kruczynski 1993b). The second and third firings of the series were
designed to maximize acceleration by raising the heat release and sound speed of the propellant. This would

allow both "high" —é—qi.and low Mach number operation. The final shot of the series was made with the same
P

propellant as in shot 34; however, both the projectile design and materials were different. This projectile
contained a short constant diameter section (92 mm long) between the nose and aft sections. This "isolator*
design was evaluated for its potential in preventing unstarts and is fully reported in Kruczynski and Liberatore
(1995). A drawing of the "standard" projectile is seen in Figure 2. Table 3 summarizes properties for these
experiments. Note that the total heat release values (Q/CpT) were equal to or less than that of shot 34, in
subsequent shots, while the release times for the shots after shot 34 were approximately equal or longer
than the baseline shot 34.

2610 2610
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Figure 2. 120-mm standard ram projectile.

Table 3. Comparison of Propellant Properties

Shot No. Stage 1 - Propellant Properties Stage 2 - Propellant Properties (2 tubes) Notes

(1Tube)
QlcpT Release® | Entrance QlcpT Release | Entrance Mach
Time (ms) | Mach No. Time (ms) No.

3.3 5.23 0.34 3.7 Standard
Projectile

Very Slight
Mod®

3.99 .
5.0CH4 +2.002 +4.

2.8CHs4 +2.002+9.6 N2

37 371 | 050 | 34 4.33 Proj. With
Moles 2.6 CHa +2.002+9.0N2 27CH4+2.002+63N2 Isolator

YMolar content gas chromatography analysis

2Approximate time to maximum energy release at given temperature (1,350 K) and constant pressure
further details on the use of this method are available in Nusca)

Small backward facing steps behind throat between fins (see Kruczynski and Liberatore)

4See projectile description above




4, EXPERIMENTAL RESULTS

The first shot of the series (34) exhibited successful ram acceleration in all three accelerator tubes.
Photos of the projectile in flight after exit showed no damage.  This shot thenbecame the "standard" against
which the succeeding tests were compared.

Shot 35 successfully accelerated through the first tube but unstarted (combustion moved forward and
past the projectile midbody) 2.355 m into the stage two propellant mixture. The projectile’s image was
captured in-flight at exit from the last accelerator tube. The projectile appeared to be completely intact; this
ruled out any question of projectile mechanical failure causing the unstart. The very slight modifications to
the projectile noted in Table 3 above did not appear to be involved in the unstart based on its performance
in the successful run of the first accelerator stage. Note that the unstart occurred even though the propellant

mixtures in accelerator tubes two and three had equal or lower -CA—‘?; values and longer release times than
P
the previous shot.

Shot 36 successfully accelerated through the first stage mixture but again unstarted about halfway into
the stage two propellant mixture. Again, an image of the projectile after exit from the accelerators revealed
no structural damage. Note that this projectile design was identical to that of shot 34 and the fuels in

accelerator tubes two and three again had lower —cé%. and longer release times.
P

Shot 37 used a significantly different projectile geometry and was fired primarily to evaluate the
performance of projectiles with constant diameter sections (isolators) in ram accelerators. To make direct
comparisons with previous “standard" projectiles, the mid and aft sections were made from a high-strength
magnesium alloy (ZK-60) to reduce total projectile mass to that of the "standard" projectile design. The nose
section was aluminum with a stainless steel tip like the other shots (see Figure 2). Again the projectile had
successful ram acceleration in the first stage. Like the previous two shots, it unstarted (violently) in the middie
of the second accelerator. This occurred even though the fuel mixture was the same as that of shot 34 which
operated successfully throughout. There was very strong photographic and material evidence that the
projectile was buming in the second stage of the accelerator. A photo of the projectile after exit was not
obtained because extreme light emission overexposed the film. Residue from burning magnesium was
scattered throughout the accelerator. The reason this test is included in this report, which is concemed
primarily with kinetics and staging effects, is because projectile material burning obviously contributed to the
heat addition of the ram cycle and sparked a separate study (Liberatore 1995) looking into the effects on
propellant kinetics of the projectile’s material. This is discussed further in the next section.

A plot of velocity vs. travel for the four cases previously mentioned may be seen in Figure 3.
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Figure 3. Velocity vs. travel.




5. ANALYSIS

Gas dynamic unstarts occurred in both attempts to raise the propeliant's sound speed (by adding He),
even though other calculated properties, such as total heat release and release times, were lower (or equal)

and longer respectively for these experiments. Since the heat content value —é—q; has been used and validated
D

extensively as an experimental parameter, it was decided to re-examine the assumption used in calculating
the “"heat release time." The first and perhaps most important consideration for these calculations is the
temperature selected to begin the combustion calculation. For the cases reported to date, an "average"
temperature in the boundary layer behind the initial bow and reflected shocks, over an average range of
expected projectile Mach numbers, was used. The calculations used in setting these conditions were from
previous shots in the ARL first stage "standard" fuel. The initial temperature was set at 1,350 K.

Following the unstarts of shots 35 and 36, it was decided to examine the CFD calculations of the flow
of shot 36 to assess an “average temperature” using a similar method to that described previously. It was
found that despite the projectile’s lower Mach number in the helium mixtures, the average temperature in
the flow was about 50 K higher. It is believed that the lower heat capacity of atomic species, in this case
helium (with three energy degrees of freedom) as compared to that of diatomic nitrogen (five energy degrees
of freedom) may account for this difference. When the "heat release rate" calculations were redone starting
at 1,400 K, the release time was found to be shorter than that for the nitrogen diluted mixtures. The new
release times for shots 35 and 36 were calculated to average 0.24 ms. When compared to the previously
calculated average of 0.40 ms at 1,350 K it appears that relatively minor temperature changes can make a
considerable difference in the kinetic calculations. Therefore, the initial conditions for such calculations must

be considered carefully.

As noted earlier, the magnesium projectile (shot 37) did burn and may have contributed significantly to
the projectile unstart through this unplanned and excessive heat release. Indeed there is some evidence
from the photographs of the aluminum projectiles, which survived unstarts (shots 35 and 36), that there may
also be some buming around the projectile’s base, alfthough this is not conclusive at this time. It is known
that aluminum projectiles are failing and perhaps burning at higher Mach numbers (Patz et al. 1995). If the
projectiles do burn, they will have a significant effect on the amount of energy being released around the
projectile. This could be responsible for some unexplained unstarts. A study of this potential was done at

ARL and is reported separately (Liberatore 1995).

6. CONCLUSIONS

A comparative method of screening new ram accelerator propellant mixtures, incorporating both total
heat release and heat release times, has been suggested. Experiments and subsequent analysis revealed
that care must be taken in determining the initial conditions for these calculations.

A projectile design, which incorporates a constant diameter mid-section, has been successfully fired
through the rigorous starting phase of a ram accelerator.

Finally, experiments reveal that bumning projectile material may produce unstarts through unplanned
energy release.
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